Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Death Dis ; 15(4): 239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561331

RESUMO

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.


Assuntos
Ferroptose , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Ferroptose/genética , MicroRNAs/genética , RNA Interferente Pequeno , Fatores de Transcrição Forkhead/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
2.
Med Oncol ; 41(5): 113, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602586

RESUMO

Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.


Assuntos
Leucemia , Humanos , Leucemia/tratamento farmacológico , Ciclo Celular , Proliferação de Células , Divisão Celular , Anexina A5 , Poli(ADP-Ribose) Polimerase-1
3.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471343

RESUMO

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Assuntos
Arsênio , 60541 , Ginkgo biloba , Humanos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Cromatografia Líquida , 60705 , Arsênio/toxicidade , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
4.
Ecotoxicol Environ Saf ; 273: 116179, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460200

RESUMO

It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).


Assuntos
Barreira Hematoencefálica , NF-kappa B , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , NF-kappa B/metabolismo , Cromo/toxicidade , Gliose , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo
5.
Food Sci Biotechnol ; 33(4): 935-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371687

RESUMO

Arsenic can cause immune inflammation, which is the basis of arsenic-induced damage to multiple organs and systems. Forkhead box P3 (Foxp3)-labelled CD4+CD25+ regulatory T cells (Tregs) play an essential role in maintaining immune homeostasis. Nuclear factor-κb (NF-κB) and Interleukin-2 (IL-2) are critical regulators of Foxp3. Rosa roxburghii Tratt (RRT) is an edible medicinal plant with anti-inflammation effects. In this study, a control group (n = 41) and an arseniasis group (n = 209) were recruited, and screened subjects from the arseniasis patients for RRTJ (n = 46) or placebo (n = 43) to explore the possible mechanism by which RRT alleviates immune inflammation. The results indicated that RRTJ can inhibits NF-κB and increases IL-2, and alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. In summary, these findings suggest a novel intervention or therapeutic target for immune inflammation in arseniasis patients and provide new evidence that RRTJ inhibits immune inflammation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01384-0.

6.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958505

RESUMO

Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.


Assuntos
Arsênio , Arsenitos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , RecQ Helicases/metabolismo , Quinazolinas/farmacologia , Quinazolinas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Simulação de Acoplamento Molecular , Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/metabolismo , Arsenitos/toxicidade
7.
Aging (Albany NY) ; 15(18): 9377-9390, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37768200

RESUMO

Ar-turmerone, a compound isolated from turmeric seeds, has exhibited anti-malignant, anti-aging and anti-inflammatory properties. Here, we assessed the effects of ar-turmerone on glioma cells. U251, U87 and LN229 glioma cell lines were treated with different concentrations of ar-turmerone (0, 50, 100 and 200 µM), and their viability and mobility were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays. The effects of ar-turmerone on U251 glioma cell proliferation were also assessed using a subcutaneous implantation tumor model. High-throughput sequencing, bioinformatic analyses and quantitative real-time polymerase chain reactions were used to identify the key signaling pathways and targets of ar-turmerone. Ar-turmerone reduced the proliferation rate and mobility of glioma cells in vitro and arrested cell division at G1/S phase. Cathepsin B was identified as a key target of ar-turmerone in glioma cells. Ar-turmerone treatment reduced cathepsin B expression and inhibited the cleavage of its target protein P27 in glioma cells. On the other hand, cathepsin B overexpression reversed the inhibitory effects of ar-turmerone on glioma cell proliferation, mobility progression in vitro and in vivo. In conclusion, ar-turmerone suppressed cathepsin B expression and P27 cleavage, thereby inhibiting the proliferation and mobility of glioma cells.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Catepsina B , Linhagem Celular Tumoral , Glioma/patologia , Proliferação de Células , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
8.
Sci Total Environ ; 905: 167236, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739080

RESUMO

Risk assessment of arsenic-induced skin damage has always received significant global attention. Theories derived from arsenic exposure in drinking water may not be applicable to the coal-burning type to arsenic-exposed area. Furthermore, very few studies have successfully determined the reference value of cumulative arsenic (CA) exposure that leads to specific skin lesions. In this study, we conducted a 22-year follow-up investigation to assess the risk of skin lesions and cancer resulting from long-term, multi-channel arsenic exposure from hazard identification, dose-response assessment, exposure assessment, and risk characterization. The results show that the arsenic exposure can significantly increase the prevalence of skin lesions. For each interquartile range increase of hair arsenic (HA) and CA, the risk of skin damage increased by 1.91 and 3.90 times, respectively. The lower confidence limit of the benchmark dose of HA of arsenic-induced various skin lesions ranged from 0.07 to 0.12 µg·g-1, and 932.57 to 1368.92 mg for CA. The chronic daily intake, lifetime average daily dose in the arsenic-exposed area after the comprehensive prevention and control measures have decreased significantly, but remained higher than the daily baseline level of 3.0 µg·kg-1·d-1. Even as recently as 2020, the hazard quotients and hazard index still exceeded 1, measuring 155.33 and 55.20, and the lifetime excess risk of skin cancer (2.80 × 10-3) remains significantly higher than the acceptable level of 10-6. Our study underscores the effectiveness of comprehensive prevention and control measures in managing high arsenic exposure in coal-burning arsenic poisoning areas. However, it is crucial to acknowledge that the risk of both non-carcinogenic and carcinogenic effects on the skin remains substantially higher than the acceptable level. We recommend setting reference limits for monitoring skin damage among individuals exposed to arsenic, with a recommended upper limit of 0.07 µg·g-1 for HA and a maximum acceptable level of 935.57 mg for CA.


Assuntos
Intoxicação por Arsênico , Arsênio , Dermatopatias , Humanos , Arsênio/toxicidade , Arsênio/análise , Seguimentos , Carvão Mineral/toxicidade , Exposição Ambiental , Intoxicação por Arsênico/epidemiologia , Dermatopatias/induzido quimicamente , Dermatopatias/epidemiologia , China/epidemiologia
9.
Vet Microbiol ; 284: 109812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343456

RESUMO

Acinetobacter baumannii (A. baumannii) is characterized by a high prevalence of drug resistance; how to effectively treat it is still a major clinical challenge. Our previous experiments confirmed that ompA, which is one of the most well-characterized virulence factors, may be dependent on the caspase-1 pathway-stimulated expression of NLRP3 inflammasome to enhance inflammation. TLRs (i.e., TLR2, etc.) is the initiating signal for NLRP3 inflammasome activation; how it relates to ompA in its underlying pathogenic mechanism is not clear. In this study, we proofed that ompA promoted NLRP3 inflammasome activation while the TLR2-NF-κB pathway was also activated after A. baumannii infection. Additionally, the expression of NLRP3 inflammasome-associated proteins and genes was inhibited by silencing TLR2 and NLRP3. This indicated that ompA might depend on the TLR2-NF-κB pathway to assemble and activate the NLRP3 inflammasome. OmpA promoted the assembly of the NLRP3 inflammasome through the TLR2-NF-κB pathway and inhibited the degradation of caspase-1 by the proteasome so that a large number of mature IL-1ß/IL-18 and other proinflammatory factors were released extracellularly to enhance the body's inflammatory response. Taken together, the results of the joint pre-study confirmed a novel TLR2-NF-κB/NLRP3/caspase-1-modulated mechanism underpinning ompA activity, the NLRP3 inflammasome pathway may be as a potential immunomodulatory target against A. baumannii infections.


Assuntos
Acinetobacter baumannii , Pneumonia , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 2 Toll-Like/genética , Acinetobacter baumannii/genética , Transdução de Sinais , Pneumonia/veterinária , Inflamação/veterinária , Caspase 1/metabolismo
10.
Hum Exp Toxicol ; 42: 9603271231172724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37154515

RESUMO

Arsenic is a prevalent environmental pollutant that targets the nervous system of living beings. Recent studies indicated that microglial injury could contribute to neuroinflammation and is associated with neuronal damage. Nevertheless, the neurotoxic mechanism underlying the arsenic-induced microglial injury requires additional research. This study explores whether cathepsin B promotes microglia cell damage caused by NaAsO2. Through CCK-8 assay and Annexin V-FITC and PI staining, we discovered that NaAsO2 induced apoptosis in BV2 cells (a microglia cell line). NaAsO2 was verified to increase mitochondrial membrane permeabilization (MMP) and promote the generation of reactive oxygen species (ROS) through JC-1 staining and DCFDA assay, respectively. Mechanically, NaAsO2 was indicated to increase the expression of cathepsin B, which could stimulate pro-apoptotic molecule Bid into the activated form, tBid, and increase lysosomal membrane permeabilization by Immunofluorescence and Western blot assessment. Subsequently, apoptotic signaling downstream of increased mitochondrial membrane permeabilization was activated, promoting caspase activation and microglial apoptosis. Cathepsin B inhibitor CA074-Me could mitigate the damage of microglial. In general, we found that NaAsO2 induced microglia apoptosis and depended on the role of the cathepsin B-mediated lysosomal-mitochondrial apoptosis pathway. Our findings provided new insight into NaAsO2-induced neurological damage.


Assuntos
Arsênio , Catepsina B , Catepsina B/metabolismo , Microglia/metabolismo , Apoptose/fisiologia , Lisossomos/metabolismo
11.
Biol Trace Elem Res ; 201(11): 5083-5097, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36720785

RESUMO

Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.


Assuntos
Arsênio , Poluentes Ambientais , Humanos , DNA Mitocondrial/genética , Arsênio/toxicidade , Arsênio/análise , Variações do Número de Cópias de DNA/genética , Mitocôndrias , Poluentes Ambientais/análise , Biomarcadores , Fígado/química
12.
Medicine (Baltimore) ; 101(50): e32352, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36550845

RESUMO

BACKGROUND: Previous studies have reported controversial results on levels of inflammatory cytokines in patients with arsenic exposure. This study aims to evaluate the associations between arsenic exposure and inflammatory cytokines and C-reaction protein (CRP). METHODS: We searched the databases including PubMed, Embase, Web of Science, and China national knowledge infrastructure (CNKI) for studies reporting levels of cytokines and CRP in patients with arsenic exposure compared to the controls. The retrieval time was from January 2000 to September 2022. RESULTS: 13 observational studies involving 1665 arsenic exposed and 1091 unexposed individuals were included. Among these studies, 6 from China, 4 from India, 2 from Bangladesh and 1 from Turkey. Our result showed that interleukin (IL)-6, IL-8, and IL-12 levels were significantly higher in arsenic-exposed individuals compared to the control group, IL-2 level was significantly lower, and Tumor necrosis factor-α, Interferon-γ, CRP, and IL-10 levels were not changed. After sensitivity analyses, tumor necrosis factor-α and Interferon-γ levels were significantly higher in arsenic-exposed individuals compared to the control group. High heterogeneity was detected in most studies. CONCLUSION: Many cytokines (such as IL-6, IL-8, and IL-12) have altered in individuals with arsenic exposure, this indicates arsenic exposure could trigger the cell-mediated inflammatory response. Regular examining immune function (such as inflammatory cytokines) in individuals with the risk of arsenic exposure is important to human health.


Assuntos
Arsênio , Citocinas , Humanos , Citocinas/metabolismo , Arsênio/toxicidade , Fator de Necrose Tumoral alfa , Interferon gama , Interleucina-8 , Interleucina-6 , Inflamação , Interleucina-12
13.
Ecotoxicol Environ Saf ; 248: 114323, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436256

RESUMO

Exposure to coal-burning arsenic leads to an increased risk of cancer, multi-systems damage and chronic diseases, with DNA methylation one potential mechanism of arsenic toxicity. There are few studies on genome-wide methylation in the coal-burning arsenic poisoning population. Illumina 850 K methylation beadchip is the most suitable technology for DNA methylation of epigenome-wide association analysis. This study used 850 K to detect changes in Genome-wide DNA methylation in whole blood samples of 12 patients with coal-burning arsenic poisoning ( Arsenic poisoning group) and four healthy control participants (Healthy control group). There is clearly abnormal genome-wide DNA methylation in coal-burning arsenic poisoning, with 647 significantly different methylation positions, 524 different methylation regions and 335 significantly different methylation genes in arsenic poisoning patients compared with healthy controls. Further functional analysis of Gene ontology (GO) and Kyoto encyclopedia of genes (KEGG) found 592 GO items and 131 KEGG pathways between patients of coal-burning arsenic poisoning and healthy control. Then, analysis of gene degree and combined-score identified NAPRT1, NT5C3B, NEDD4L, SLC22A3 and RAB11B as target genes. Further validation by qRT-PCR indicates that mRNA expression of five genes changes significantly in the arsenic poisoning group (n = 72) compared to the healthy control group (n = 72). These results showed the genome-wide methylation pattern and highlighted five critical genes within the coal-burning arsenic poisoning population that involve Nicotinate and nicotinamide metabolism, Choline metabolism in cancer, and Ubiquitin mediated proteolysis. Next, the methylation profile of coal burning arsenic poisoning will be further excavation and the mechanism of coal burning arsenic poisoning will be further explored from five genes related pathways and functions.


Assuntos
Intoxicação por Arsênico , Arsênio , Humanos , Metilação de DNA/genética , Intoxicação por Arsênico/genética , Carvão Mineral , DNA
14.
Ecotoxicol Environ Saf ; 247: 114208, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279635

RESUMO

BACKGROUND: Several lines of evidence support a significant relationship between exposure to arsenic and diabetes. However, the underlying pathophysiological mechanisms remain incompletely elucidated. OBJECTIVE: This study examined the association and risk of circulating inflammatory mediators with hyperglycemia in coal-induced arsenicosis. METHODS: A cross-sectional study was conducted in the typical coal-burning area in which arsenicosis is endemic in Xingren County, Guizhou, China. A total of 299 arsenicosis subjects and 137 non-arsenic exposed volunteers were recruited for the present study. Participant's hyperglycemia-related parameters, including fasting blood glucose (FBG), fasting serum insulin (FINS), homeostasis model assessment for both insulin resistance (HOMA-IR) and pancreatic ß-cell function (HOMA-ß), as well as circulating inflammatory biomarkers i.e., Interleukins-1ß (IL-1ß), IL- 2, IL - 6, IL-10, IL- 17, IL-18 and TNF-α), were determined and analyzed after completing questionnaire investigation and physical examination. RESULTS: The results clearly showed that coal-burning arsenic exposure was significantly associated with hyperglycemia-related outcomes. Specifically, arsenicosis subjects from the coal-burning endemic area showed a higher level of FBG (median 5.87 mmol/L vs. 4.65 mmol/L) and increased prevalence of hyperglycemia (26.76% vs.16.79%) than reference subjects from the non-arsenic endemic area. Increased HOMA-IR (median 1.93 vs.1.44) and declined HOMA-ß (median 96.23 vs. 84.91) were also noted in arsenicosis subjects. Moreover, arsenic exposure was significantly associated with the increased risk of hyperglycemia (adjusted OR = 2.32, 95% CI: 1.37,3.93). In addition, a positive association between arsenic exposure and inflammatory response was observed, and the alteration in circulating inflammatory markers were found to be significantly associated with hyperglycemia-related parameters. Meanwhile, there was a positive relationship between elevated circulating IL-1ß, IL-18, IL-6, as well as decreased IL-10 and the increasing risk of arsenic-induced hyperglycemia [adjusted OR = 2.19 (95% CI: 1.26, 3.13);1.13 (95%CI: 1.08, 1.37); 1.19 (95% CI: 1.13, 1.56); 1.15(95% CI: 1.05, 1.36); respectively]. Path analysis further revealed that the mediating effect of IL-1ß and IL-18 on the relationship between arsenic exposure and hyperglycemia was closely associated with pancreatic ß-cell dysfunction, while those of IL-6 and IL-10 on the association between arsenic exposure and hyperglycemia were partially through insulin resistance. CONCLUSIONS: This population-based study indicated that arsenic exposure has a clear disruptive effect on glucose homeostasis, and an elevated inflammatory response was implicated in the risk of arsenic-induced hyperglycemia.


Assuntos
Intoxicação por Arsênico , Arsênio , Hiperglicemia , Resistência à Insulina , Humanos , Carvão Mineral , Intoxicação por Arsênico/epidemiologia , Interleucina-10 , Interleucina-18 , Estudos Transversais , Interleucina-6 , Arsênio/toxicidade , Arsênio/análise , Biomarcadores , Hiperglicemia/induzido quimicamente , Hiperglicemia/epidemiologia
15.
Hum Exp Toxicol ; 41: 9603271221121313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968550

RESUMO

Increasing evidence supports the role of arsenic in dysregulated immune and inflammation responses, while, safe and effective treatments have not been fully examined. Rosa roxburghii Tratt (RRT), a traditional Chinese edible fruit with potential immunoregulatory activities, was considered as a dietary supplement to explore its protective effects and possible mechanism in arsenic-induced dysregulated inflammation responses. We enrolled 209 arsenicosis patients and 41 controls to obtain baseline data, including the degree of arsenic poisoning prior to the RRT juice (RRTJ) intervention. Then, based on criteria of inclusion and exclusion and the principle of voluntary participation, 106 arsenicosis patients who volunteered to receive treatment were divided into RRTJ (n = 53) and placebo (n = 53) groups randomly. After three months follow-up, 89 subjects (46 and 43 of the RRTJ and placebo groups, respectively) completed the study and were examined for the effects and possible mechanisms of RRTJ on the Th17 cells-related pro-inflammatory responses in peripheral blood mononuclear cells (PBMCs). The PBMCs had higher levels of Th17 and Th17-related inflammatory cytokines IL-17, IL-6, and RORγt. Furthermore, the gene expressions of STAT3 and SOCS3 in PBMCs increased and decreased, respectively. Conversely, RRTJ decreased the number of Th17 cells, secretion of IL-17, IL-6, RORγt, and relative mRNA levels of STAT3, and increased the transcript levels of SOCS3. This study provides limited evidence that possible immunomodulatory effects of RRTJ on the critical regulators, IL-6 and STAT3, of the Th17 cells in arsenicosis patients, which indicated that IL-6/STAT3 pathway might appear as a potential therapeutic target in arsenicosis.


Assuntos
Intoxicação por Arsênico , Arsênio , Fitoterapia , Preparações de Plantas , Rosa , Arsênio/toxicidade , Intoxicação por Arsênico/genética , Intoxicação por Arsênico/metabolismo , Intoxicação por Arsênico/terapia , Sucos de Frutas e Vegetais , Humanos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Preparações de Plantas/metabolismo , Preparações de Plantas/uso terapêutico , Rosa/metabolismo
16.
Front Pharmacol ; 13: 819472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548358

RESUMO

Endemic arsenism caused by coal burning is a unique type of biogeochemical disease that only exists in China, and it is also a disease of element imbalances. Previous studies have shown that element imbalances are involved in the pathogenesis of arsenic; however, the interaction between the various elements and effective preventive measures have not been fully studied. This study first conducted a cross-sectional study of a total of 365 participants. The results showed that arsenic exposure can increase the content of elements (Al, As, Fe, Hg, K, and Na) in the hair (p < 0.05), but the content of other elements (Ca, Co, Cu, Mn, Mo, P, Se, Sr, V, and Zn) was significantly decreased (p < 0.05). Also, the high level of As, Fe, and Pb and the low level of Se can increase the risk of arsenism (p < 0.05). Further study found that the combined exposure of Fe-As and Pb-As can increase the risk of arsenism, but the combined exposure of Se-As can reduce the risk of arsenism (p < 0.05). In particular, a randomized, controlled, double-blind intervention study reveals that Rosa roxburghii Tratt juice (RRT) can reverse the abovementioned element imbalances (the high level of Al, As, and Fe and the low level of Cu, Mn, Se, Sr, and Zn) caused by arsenic (p < 0.05). Our study provides some limited evidence that the element imbalances (the high level of As, Fe, and Pb and the low level of Se) are the risk factors for the occurrences of arsenism. The second major finding was that RRT can regulate the element imbalances, which is expected to improve arsenism. This study provides a scientific basis for further understanding a possible traditional Chinese health food, RRT, as a more effective detoxication of arsenism.

17.
Oxid Med Cell Longev ; 2022: 9865606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528517

RESUMO

Arsenic poisoning is a geochemical disease that seriously endangers human health. The liver is one of the important target organs for arsenic poisoning, several studies have shown that oxidative stress plays an important role in arsenic-induced liver damage. However, the specific mechanism of arsenic-induced oxidative stress has not yet been fully elucidated, and currently, there are no effective intervention measures for the prevention and treatment of arsenic-induced liver damage. In this study, the effect of the Nrf2/GPX4 signaling pathway and oxidative stress in the arsenic-induced liver damage was first evaluated. The results show that arsenic can activate the Nrf2/GPX4 signaling pathway and increase the oxidative stress, which in turn promotes arsenic-induced liver damage in MIHA cells. Moreover, when we applied the Nrf2 inhibitor, the promoting effect of arsenic on liver damage was alleviated by inhibiting the activation of the Nrf2/GPX4 signaling pathway. Subsequently, the Rosa roxburghii Tratt [Rosaceae] (RRT) intervention experiments in cells and arsenic poisoning population were designed. The results revealed that RRT can inhibit Nrf2/GPX4 signaling pathway to reduce oxidative stress, thereby alleviates arsenic-induced liver damage. This study provides some limited evidence that arsenite can activate Nrf2/GPX4 signaling pathway to induce oxidative stress, which in turn promotes arsenic-induced liver damage in MIHA cells. The second major finding was that Kaji-ichigoside F1 may be a potential bioactive compound of RRT, which can inhibit Nrf2/GPX4 signaling pathway to reduce oxidative stress, thereby alleviates arsenic-induced liver damage. Our study will contribute to a deeper understanding of the mechanisms in arsenic-induced liver damage, these findings will identify a possible natural medicinal food dual-purpose fruit, RRT, as a more effective prevention and control strategies for arsenic poisoning.


Assuntos
Intoxicação por Arsênico , Arsênio , Preparações de Plantas , Rosa , Arsênio/toxicidade , Intoxicação por Arsênico/metabolismo , Intoxicação por Arsênico/prevenção & controle , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Rosa/química , Animais , Preparações de Plantas/farmacologia
18.
Bioengineered ; 13(5): 13238-13251, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635094

RESUMO

Intratumoral hypoxia is a common feature of pancreatic cancer (PC) and also plays a role in its progression. However, hypoxia-regulated signatures in PC are still not completely understood. This study aimed to identify core hypoxia-associated genes and determine their underlying molecular mechanisms in PC cells. Transformer 2 alpha homolog (TRA2A) was found to be an important hypoxia-associated gene, which was upregulated in PC tissues and in PC cells cultured under hypoxia. High TRA2A expression was associated with advanced stage, poor differentiation, and lymph node metastasis. Under normoxic and hypoxic conditions, knockdown of TRA2A both markedly suppressed PC cell proliferation and motility in vitro and in vivo, as well as activation of the AKT pathway. Hypoxia-inducible factor 1 subunit alpha (HIF1α) upregulated the transcription of TRA2A by directly binding to its promoter. TRA2A showed a co-expression relationship with HIF1α in PC tissues. Overexpression of TRA2A alleviated the pro-inhibitive functions of HIF1α-inhibition on PC cell proliferation and motility under hypoxia. In conclusion, TRA2A is a crucial downstream gene of HIF1α that accelerates the proliferation and motility of PC cells. TRA2A may be a novel and practical molecular target for investigating the hypoxic response of PC cells.Abbreviations: TRA2A, transformer 2A protein; PC, pancreatic cancer; HIF1α, hypoxia-inducible factor 1-alpha; GEO, Gene Expression Omnibus; IHC, immunohistochemical staining.


Assuntos
Neoplasias Pancreáticas , Proliferação de Células/genética , Humanos , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas de Ligação a RNA , Neoplasias Pancreáticas
19.
Bioengineered ; 13(4): 8643-8656, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322742

RESUMO

Terpinen-4-ol (T4O), a compound isolated from the seeds of turmeric, has exhibited anti-malignancy, anti-aging, and anti-inflammatory properties in previous studies. However, the specific effects and molecular mechanisms of T4O on pancreatic cancer (PC) cells remain largely unknown. In this study, we demonstrated that T4O markedly suppressed PC cell proliferation and colony formation in vitro and induced apoptosis. Similarly, T4O significantly inhibited the migration and invasion of PC cells in vitro. Through RNA sequencing, 858 differentially expressed genes (DEGs) were identified, which were enriched in the Rhodopsin (RHO)/ Ras homolog family member A (RHOA) signaling pathway. Rho-associated coiled-coil containing protein kinase 2 (ROCK2), a DEG enriched in the RHO/RHOA signaling pathway, was considered as a key target of T4O in PC cells; it was significantly reduced after T4O treatment, highly expressed in PC tissues, and negatively associated with patient outcome. Overexpression of ROCK2 significantly reduced the inhibitory effects of T4O on PC cell proliferation and mobility. Moreover, T4O inhibited cell proliferation in vivo and decreased the Ki-67, cell nuclear antigen, EMT markers, and ROCK2 expression. In conclusion, we consider that T4O can suppress the malignant biological behavior of PC by reducing the expression of ROCK2, thus contributing to PC therapy.


Assuntos
Neoplasias Pancreáticas , Quinases Associadas a rho , Proliferação de Células/genética , Humanos , Neoplasias Pancreáticas/genética , Terpenos/farmacologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
20.
Biol Trace Elem Res ; 200(12): 4967-4976, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35064870

RESUMO

Coal-burning type of arsenism, a chronic arsenism caused by environmental arsenic pollution, found firstly at Guizhou Province of China, manifested as the disruption of pro- and anti-inflammatory T cell balance and multiple organ damage, while no specific treatment for the arsenism patients. The effect of methylation of the forkhead box P3 (Foxp3) promoter region on arsenic-induced disruption of pro- and anti-inflammatory T cell balance was first evaluated in this study, between the control and arsenism groups. The results show that arsenic can induce the hypermethylation of 6 sites in the Foxp3 promoter by upregulating the expression of recombinant DNA Methyltransferase 1 (Dnmt1) mRNA, leading to the downregulation of Foxp3 mRNA, Tregs, and interleukin 10 (IL-10, anti-inflammatory cytokine) levels, and increased the levels of interleukin 17 (IL-17, pro-inflammatory cytokine) in the peripheral blood of patients with arsenic poisoning. Further randomized controlled double-blind experiments (including the placebo control groups and the Ginkgo biloba extract (GBE) intervention groups) showed that compared to the placebo control group or before GBE intervention, the levels of Dnmt1 mRNA, Foxp3 methylation, and IL-17 in the peripheral blood of the GBE intervention group were significantly decreased after intervention (P < 0.05), but the levels of regulatory T cells (Tregs) and IL-10 were significantly increased (P < 0.05). Our study provides some limited evidence that GBE can attenuate the disruption of pro- and anti-inflammatory balance of peripheral blood in arsenism patients by decreasing hypermethylation of the Foxp3 promoter region. This study provides scientific basis for further understanding a possible natural medicinal plant, GBE, as a more effective measure to prevent and control the disruption of pro- and anti-inflammatory balance caused by coal-burning type of arsenism.


Assuntos
Arsênio , Interleucina-10 , Anti-Inflamatórios , Arsênio/toxicidade , Carvão Mineral , Citocinas/genética , DNA Recombinante , Fatores de Transcrição Forkhead/genética , Ginkgo biloba , Humanos , Interleucina-10/genética , Interleucina-17/genética , Metiltransferases/genética , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...